Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Z Gesundh Wiss ; : 1-13, 2023 Apr 11.
Article in English | MEDLINE | ID: covidwho-2293753

ABSTRACT

Aim: To investigate the relationship between related factors and visual acuity of Chinese school students before and during the COVID-19 pandemic. Subject and methods: Chinese students from primary and secondary schools were included from the Chinese National Surveys on Students' Constitution and Health CNSSCH (2019). A total of 1496 participants completed follow-ups in June and December 2020, respectively. Generalized estimating equations were used to test the differences in visual environment. Logistic regression models were utilized to examine the roles of behaviors and surrounding environment changes associated with myopia before and during the pandemic. Results: The prevalence of myopia was 47.7%, 55.6%, and 57.2% in baseline and two follow-ups, respectively. Significant differences existed for gender, learning level, and region (all P < 0.05). The proportion of new myopia and myopia torsion was the highest in the primary schools. Multivariate logistic regression analysis found that screen time ≥ 4h/d (OR = 2.717), poor eye habits (OR = 1.477), insufficient lighting for studying at night (OR = 1.779), desk or roof lamps only (OR = 1.388), and poor sleep quality (OR = 4.512) were the risk factors for myopia (all P < 0.05), and eye exercises (OR = 0.417), milk intake (OR = 0.758), and eggs intake (OR = 0.735) were the protective factors for myopia (all P < 0.05). Conclusion: Prevalence of myopia increased among Chinese students before and during the COVID-19. It is necessary to pay more attention to the pupils' visual acuity, especially in primary school students, in the future. Supplementary Information: The online version contains supplementary material available at 10.1007/s10389-023-01900-w.

2.
iScience ; 25(6): 104431, 2022 Jun 17.
Article in English | MEDLINE | ID: covidwho-1851361

ABSTRACT

The different variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have attracted most public concern because they caused "wave and wave" COVID-19 pandemic. The initial step of viral infection is mediated by the SARS-CoV-2 Spike (S) protein, which mediates the receptor recognition and membrane fusion between virus and host cells. Neutralizing antibodies (nAbs) targeting the S protein of SARS-CoV-2 have become promising candidates for clinical intervention strategy, while multiple studies have shown that different variants have enhanced infectivity and antibody resistance. Here, we explore the structure and function of STS165, a broadly inter-Spike bivalent nAb against SARS-CoV-2 variants and even SARS-CoV, contributing to further understanding of the working mechanism of nAbs.

3.
Signal Transduct Target Ther ; 7(1): 139, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1815514

ABSTRACT

The SARS-CoV-2 Omicron variant shows substantial resistance to neutralization by infection- and vaccination-induced antibodies, highlighting the demands for research on the continuing discovery of broadly neutralizing antibodies (bnAbs). Here, we developed a panel of bnAbs against Omicron and other variants of concern (VOCs) elicited by vaccination of adenovirus-vectored COVID-19 vaccine (Ad5-nCoV). We also investigated the human longitudinal antibody responses following vaccination and demonstrated how the bnAbs evolved over time. A monoclonal antibody (mAb), named ZWD12, exhibited potent and broad neutralization against SARS-CoV-2 variants Alpha, Beta, Gamma, Kappa, Delta, and Omicron by blocking the spike protein binding to the angiotensin-converting enzyme 2 (ACE2) and provided complete protection in the challenged prophylactic and therapeutic K18-hACE2 transgenic mouse model. We defined the ZWD12 epitope by determining its structure in complex with the spike (S) protein via cryo-electron microscopy. This study affords the potential to develop broadly therapeutic mAb drugs and suggests that the RBD epitope bound by ZWD12 is a rational target for the design of a broad spectrum of vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Monoclonal/genetics , Antibodies, Viral , Broadly Neutralizing Antibodies , COVID-19/prevention & control , COVID-19 Vaccines/genetics , Cryoelectron Microscopy , Epitopes , Humans , Mice , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccination , Viral Envelope Proteins
4.
Cell Discov ; 7(1): 123, 2021 Dec 18.
Article in English | MEDLINE | ID: covidwho-1768807

ABSTRACT

A safe and effective vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is urgently needed to tackle the COVID-19 global pandemic. Here, we describe the development of chimpanzee adenovirus serotypes 6 and 68 (AdC6 and AdC68) vector-based vaccine candidates expressing the full-length transmembrane spike glycoprotein. We assessed the vaccine immunogenicity, protective efficacy, and immune cell profiles using single-cell RNA sequencing in mice. Mice were vaccinated via the intramuscular route with the two vaccine candidates using prime-only regimens or heterologous prime-boost regimens. Both chimpanzee adenovirus-based vaccines elicited strong and long-term antibody and T cell responses, balanced Th1/Th2 cell responses, robust germinal center responses, and provided effective protection against SARS-CoV-2 infection in mouse lungs. Strikingly, we found that heterologous prime-boost immunization induced higher titers of protective antibodies, and more spike-specific memory CD8+ T cells in mice. Potent neutralizing antibodies produced against the highly transmissible SARS-CoV-2 variants B.1.1.7 lineage (also known as N501Y.V1) and B.1.351 lineage (also known as N501Y.V2) were detectable in mouse sera over 6 months after prime immunization. Our results demonstrate that the heterologous prime-boost strategy with chimpanzee adenovirus-based vaccines is promising for further development to prevent SARS-CoV-2 infection.

6.
Cell Res ; 31(5): 517-525, 2021 05.
Article in English | MEDLINE | ID: covidwho-1139736

ABSTRACT

Neutralizing monoclonal antibodies (nAbs) to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represent promising candidates for clinical intervention against coronavirus disease 2019 (COVID-19). We isolated a large number of nAbs from SARS-CoV-2-infected individuals capable of disrupting proper interaction between the receptor binding domain (RBD) of the viral spike (S) protein and the receptor angiotensin converting enzyme 2 (ACE2). However, the structural basis for their potent neutralizing activity remains unclear. Here, we report cryo-EM structures of the ten most potent nAbs in their native full-length IgG-form or in both IgG-form and Fab-form bound to the trimeric S protein of SARS-CoV-2. The bivalent binding of the full-length IgG is found to associate with more RBDs in the "up" conformation than the monovalent binding of Fab, perhaps contributing to the enhanced neutralizing activity of IgG and triggering more shedding of the S1 subunit from the S protein. Comparison of a large number of nAbs identified common and unique structural features associated with their potent neutralizing activities. This work provides a structural basis for further understanding the mechanism of nAbs, especially through revealing the bivalent binding and its correlation with more potent neutralization and the shedding of S1 subunit.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19/immunology , Immunoglobulin G/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/ultrastructure , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Antibodies, Viral/ultrastructure , Host-Pathogen Interactions , Humans , Immunoglobulin G/chemistry , Immunoglobulin G/ultrastructure , Models, Molecular , Protein Conformation , Protein Multimerization , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/ultrastructure
8.
Transl Psychiatry ; 10(1): 225, 2020 07 09.
Article in English | MEDLINE | ID: covidwho-640026

ABSTRACT

To understand Wuhan residents' psychological reactions to the COVID-19 epidemic and offer a reference point for interventions, an online questionnaire survey was conducted. It included the Disorder 7-Item Scale (GAD-7), the Patient Health Questionnaire 9-Item Scale (PHQ-9), Athens Insomnia Scale, and Simplified Coping Style Questionnaire. Categorical data were reported as numbers and percentages. Multivariate logistic regression models were used to evaluate the association between demographic factors and anxiety, depression, sleep disorder, and passive coping style. A total of 1242 Wuhan residents investigated, 27.5% had anxiety, 29.3% had depression, 30.0% had a sleep disorder, and 29.8% had a passive response to COVID-19. Being female was the risk factor for anxiety (OR = 1.62) and sleep disorder (OR = 1.36); being married was associated with anxiety (OR = 1.75); having a monthly income between 1000 and 5000 CNY (OR = 1.44, OR = 1.83, OR = 2.61) or >5000 CNY (OR = 1.47, OR = 1.45, OR = 2.14) was a risk factor for anxiety, depression, and sleep disorder; not exercising (OR = 1.45, OR = 1.71, OR = 1. 85, OR = 1.71) was a common risk factor for anxiety, depression, sleep disorder, and passive coping style; and having a higher education level (bachelor's degree and above) (OR = 1.40) was associated with having a sleep disorder. Wuhan residents' psychological status and sleep quality were relatively poorer than they were before the COVID-19 epidemic; however, the rate of passive coping to stress was relatively higher.


Subject(s)
Adaptation, Psychological , Coronavirus Infections/psychology , Epidemics , Pneumonia, Viral/psychology , Sleep Wake Disorders/etiology , Stress, Psychological/etiology , Adult , Anxiety/epidemiology , Anxiety/etiology , COVID-19 , China/epidemiology , Coronavirus Infections/epidemiology , Cross-Sectional Studies , Depression/epidemiology , Depression/etiology , Epidemics/statistics & numerical data , Female , Humans , Logistic Models , Male , Pandemics , Pneumonia, Viral/epidemiology , Risk Factors , Sex Factors , Sleep Wake Disorders/epidemiology , Sleep Wake Disorders/psychology , Socioeconomic Factors , Stress, Psychological/epidemiology , Stress, Psychological/psychology , Surveys and Questionnaires
9.
Science ; 369(6504): 650-655, 2020 08 07.
Article in English | MEDLINE | ID: covidwho-610891

ABSTRACT

Developing therapeutics against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could be guided by the distribution of epitopes, not only on the receptor binding domain (RBD) of the Spike (S) protein but also across the full Spike (S) protein. We isolated and characterized monoclonal antibodies (mAbs) from 10 convalescent COVID-19 patients. Three mAbs showed neutralizing activities against authentic SARS-CoV-2. One mAb, named 4A8, exhibits high neutralization potency against both authentic and pseudotyped SARS-CoV-2 but does not bind the RBD. We defined the epitope of 4A8 as the N-terminal domain (NTD) of the S protein by determining with cryo-eletron microscopy its structure in complex with the S protein to an overall resolution of 3.1 angstroms and local resolution of 3.3 angstroms for the 4A8-NTD interface. This points to the NTD as a promising target for therapeutic mAbs against COVID-19.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Adult , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Monoclonal/blood , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/metabolism , Antibodies, Viral/blood , Antibodies, Viral/chemistry , Antibodies, Viral/metabolism , Antibody Affinity , Antibody Specificity , Antigens, Viral/immunology , B-Lymphocytes/immunology , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/therapy , Coronavirus Nucleocapsid Proteins , Cryoelectron Microscopy , Enzyme-Linked Immunosorbent Assay , Genes, Immunoglobulin Heavy Chain , Humans , Immunologic Memory , Middle Aged , Mutation , Nucleocapsid Proteins/immunology , Pandemics , Peptidyl-Dipeptidase A/metabolism , Phosphoproteins , Pneumonia, Viral/therapy , Protein Domains , Protein Interaction Domains and Motifs/immunology , Receptors, Coronavirus , Receptors, Virus/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells , Young Adult
10.
Science ; 367(6485): 1444-1448, 2020 03 27.
Article in English | MEDLINE | ID: covidwho-17388

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is the cellular receptor for severe acute respiratory syndrome-coronavirus (SARS-CoV) and the new coronavirus (SARS-CoV-2) that is causing the serious coronavirus disease 2019 (COVID-19) epidemic. Here, we present cryo-electron microscopy structures of full-length human ACE2 in the presence of the neutral amino acid transporter B0AT1 with or without the receptor binding domain (RBD) of the surface spike glycoprotein (S protein) of SARS-CoV-2, both at an overall resolution of 2.9 angstroms, with a local resolution of 3.5 angstroms at the ACE2-RBD interface. The ACE2-B0AT1 complex is assembled as a dimer of heterodimers, with the collectrin-like domain of ACE2 mediating homodimerization. The RBD is recognized by the extracellular peptidase domain of ACE2 mainly through polar residues. These findings provide important insights into the molecular basis for coronavirus recognition and infection.


Subject(s)
Amino Acid Transport Systems, Neutral/ultrastructure , Peptidyl-Dipeptidase A/ultrastructure , Receptors, Virus/ultrastructure , Spike Glycoprotein, Coronavirus/ultrastructure , Amino Acid Sequence , Angiotensin-Converting Enzyme 2 , Betacoronavirus , COVID-19 , Coronavirus Infections , Cryoelectron Microscopy , Humans , Models, Molecular , Pandemics , Pneumonia, Viral , Protein Binding , Protein Domains , Protein Multimerization , Severe acute respiratory syndrome-related coronavirus , SARS-CoV-2 , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL